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Abstract

We report on a search for bottom squarks (eb) produced in p�p collisions

at
p
s = 1:8 TeV using the D� detector at Fermilab. Bottom squarks are

assumed to be produced in pairs and to decay to the lightest supersymmetric

particle (LSP) and a b quark with a branching fraction of 100%. The LSP

is assumed to be the lightest neutralino and stable. We set limits on the

production cross section as a function of eb mass and LSP mass.
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Supersymmetry (SUSY) is a hypothetical fundamental space-time symmetry relating

bosons and fermions [1]. Supersymmetric extensions to the standard model (SM) feature as

yet undiscovered supersymmetricpartners for every SM particle. The scalar quarks (squarks)

eqL and eqR are the partners of the left-handed and right-handed quarks, respectively. These

are weak eigenstates, and can mix to form the mass eigenstates, with eq1 = eqLcos� + eqRsin�

for the lighter squark, and the orthogonal combination for the heavier squark eq2. In most

SUSY models, the masses of the squarks are approximately degenerate. But in some models,

the lighter top and bottom squarks could have a lower mass than the other squarks because

of the high mass values of the top and bottom quarks. In particular, lighter bottom squarks

could arise for large values of tan�, the ratio of the vacuum expectation values of the two

Higgs �elds in the minimal supersymmetric standard model.

We report the results of a mixing-independent search for bottom squarks produced in

p�p collisions at
p
s = 1:8 TeV. Squarks are produced in pairs by QCD processes with the

production cross section depending on the mass of the squark but not on the mixing angle �.

We search for events where both squarks decay to the lightest neutralino e�0
1 via

eb! e�0
1 + b

and assume that the e�0
1 is the lightest supersymmetric particle (LSP) and stable. This

should be the dominant decay channel provided that the mass of the squark (m~b) is larger

than the combinedmasses of the b quark and LSP (mLSP); therefore we assume its branching

fraction is 100%. This yields a �nal state consisting of two b quarks and two unobserved

stable particles resulting in missing transverse energy (E/T ) in the detector. In this paper, we

give limits on the squark pair production cross section for di�erent values of m~b and mLSP.

Limits on the cross section are used to exclude a region in the (mLSP, m~b) plane. Limits [2]

from the CERN e+e� collider (LEP) experiments depend on the Z=-to-squark coupling,

which is a function of the mixing angle. For maximal coupling, the LEP exclusion region

can extend to the kinematic maximum; for example, to about 85 GeV/c2 at
p
s = 183 GeV.

The data used for our analysis were collected during 1992{1996 by the D� detector [3]

at the Fermilab Tevatron Collider. The D� detector is composed of three major systems:

an inner detector for tracking charged particles, a uranium/liquid argon calorimeter for
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measuring electromagnetic and hadronic energies, and a muon spectrometer consisting of a

magnetized iron toroid and three layers of drift tubes. The detector measures jets with an

energy resolution of approximately �=E = 0:8=
p
E (E in GeV) and muons with a momentum

resolution of �=p = [(0:18(p�2)
p

)2+ (0:003p)2]1=2 (p in GeV=c). E/T is determined by summing

the calorimeter and muon transverse energies, and is measured with a resolution of � = 1.08

GeV + 0.019�(�jET j) [4].
Four channels are combined to set limits on the production of bottom squarks. The �rst

required a E/T and jets topology. This channel was previously used to set limits on the mass

of the top squark, which was assumed to decay et ! e�0
1 + c [5]. The other three channels

in addition required that at least one jet has an associated muon, thereby tagging b quark

decay, and were used to set limits on a charge 1/3 third generation leptoquark for the decay

LQ! �� + b [6]. We use identical data samples and event selections for the bottom squark

limits presented in this paper. For all channels, the presence of signi�cant E/T is used to

identify the non-interacting LSPs. Figure 1 shows the expected E/T distribution for two

values of m~b and di�erent mLSP [7]. Our requirement that E/T> 35 � 40 GeV reduces the

acceptance for small values of the mass di�erence m~b{mLSP. Backgrounds arise from events

where neutrinos produce signi�cant E/T ; for example, in W+jets events, where W ! l�.

Events for the E/T+jets channel were collected using a trigger that required E/T> 35

GeV. The o�ine analysis required two jets (Ejet
T > 30 GeV), E/T> 40 GeV, and no isolated

electrons or muons. Events had to have only one primary vertex to assure an unambiguous

calculation of E/T . To eliminate QCD backgrounds, additional cuts were made on the angles

between the two jets, and between jets and the direction of the E/T . Data with an integrated

luminosity of 7.4 pb�1, satisfying the above selection criteria, yielded three candidate events.

Background was estimated to be 3:5�1:2 events, with 3:0�0:9 events fromW boson decays

and 0:5� 0:3 events from Z boson decays [5].

The trigger for the muon channels required either two low-pT muons (p�T > 3:0 GeV/c),

or a single low-pT muon and a jet with ET > 10 GeV, or a high-pT muon (p�T > 15 GeV/c)

and a jet with ET > 15 GeV. Integrated luminosities of 60.1 pb�1, 19.5 pb�1, and 92.4 pb�1
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FIG. 1. The expected distributions of E/T for m~b values of 70 (a) and 100 (b) GeV/c2, for the

indicated values of mLSP [7].

respectively were collected using the three muon triggers. The o�ine analysis used muons

in the pseudorapidity range j��j < 1.0 and p�T > 3:5 GeV/c, while jets were required to have

ET > 10 GeV. For events with two muons, each muon had to be associated with its own jet.

In single muon events, the muon was required to be associated with a jet, and an additional

jet with ET > 25 GeV was also required. To remove QCD backgrounds, events were selected

with E/T > 35 GeV and an azimuthal angular separation between the E/T and the nearest

jet of > 0:7 radians. For the single muon channels, backgrounds from W boson decays were

reduced by cuts on muon-jet correlations, while background from top quark production was

minimized by cuts on the scalar sum of jet ET . After imposition of all selection criteria, two

events remained in the data.

We considered background contributions to the muon channels from t�t and W and Z

boson decays [6]. Top quark events have multiple b quarks and E/T , and we estimated that

1:4 � 0:5 t�t events remained in our sample. W and Z events have E/T from W ! l� or

Z ! ���. They can also have muons near jets that can mimic b quark decays when a prompt

muon overlaps a jet, or a jet fragments into a muon via a c quark or a �=K decay. We

8



estimated there were 1:0� 0:4 W boson events and 0:1� 0:1 Z boson events in the sample.

The total background for the muon channels was therefore 2:5 � 0:6 events.

Combining the four channels yields �ve events, with a total estimated background of

6:0 � 1:3 events. We set limits on the cross section by combining the detection e�ciencies

and integrated luminosities for the di�erent channels. We calculate the detection e�ciency

using Monte Carlo (MC) generated acceptances [7], multiplied by trigger and reconstruction

e�ciencies obtained from data [5,6]. The total e�ciencies for di�erent squark and neutralino

masses are summarized in Table I. Using a muon to tag b quark decays reduces the e�ciency

for those channels, but their higher integrated luminosities yield a sensitivity comparable

to that of the E/T+jets channel. Including systematic errors and statistics for the MC, the

total uncertainty on the combined e�ciency varies between 8.6% and 29%, depending on the

assumed masses. The jet energy scale dominates the systematic error for m~b = 70 GeV/c2,

while uncertainties on the muon trigger and reconstruction e�ciency dominate at higher

squark masses. The 95% con�dence level (C.L.) upper limits on the pair production cross

section are determined using Bayesian methods, and include the systematic uncertainty on

the e�ciency and a 5.3% uncertainty in the integrated luminosity. The resulting upper

limits are given in Table I for di�erent values of m~b and mLSP.

We use the program prospino [8] to calculate the bottom squark pair production cross

section as a function of m~b. The cross section is evaluated assuming a renormalization scale

� = m
eb
. The program includes next-to-leading order diagrams, and uses cteq4m parton

distribution functions [9]. For any given m~b, we determine the value of mLSP where our 95%

C.L. limit intersects the theoretical cross section. The excluded region in the (mLSP,m~b)

plane is shown in Fig. 2. We exclude values of m~b below 115 GeV/c2 for mLSP < 20

GeV/c2. For m~b = 85 GeV/c2, we exclude the region with mLSP < 47 GeV/c2. Also shown

are limits [2] from ALEPH for
p
s = 181 � 184 GeV. For most allowable values of mLSP,

they exclude the region with m~b < 83 GeV/c2, assuming maximal coupling (� = 0o) [10].

In conclusion, we observe �ve candidate events consistent with the �nal state b�b+E/T .

We estimate that 6:0�1:3 events are expected from t�t and W and Z boson production, and
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TABLE I. Total e�ciencies for di�erent m~b and mLSP values for the four channels, and 95%

C.L. limits on the production cross section obtained by combining all channels.

m~b mLSP Total e�ciency (�10�3) � limit

(GeV/c2) E/T+ dimuon single muon (pb)

jets low-pT high-pT

70 30 18 0.13 2.2 0.3 32

70 50 4 0.02 0.6 0.1 245

85 40 29 0.20 3.9 0.6 18.8

85 60 11 0.04 1.0 0.1 84

100 20 43 0.50 9.5 1.9 9.3

100 40 34 0.27 7.0 1.3 12.6

100 50 30 0.30 5.8 1.0 14.7

115 40 51 0.54 10.9 2.0 8.0

FIG. 2. The 95% C.L. exclusion contour in the (mLSP,m~b) plane. Also shown are the results

from the ALEPH experiment at LEP for minimal (� = 68o) and maximal (� = 0o) coupling [2].
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�nd no excess of events that can be attributed to bottom squark production. We interpret

our result as an excluded region in the (mLSP,m~b) plane. This result is independent of the

mixing between ebL and ebR.
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